sábado, 1 de noviembre de 2014

LA PASIÓN DE LEER



En esta página encuentras las siguientes lecturas


  1. Marihuna versus alcohol
  2. la naturaleza de las matemáticas
  3. El mundo matemático
  4. Teoría sobre el infierno


Curiosidades científicas
Marihuana vs. alcohol
Heriberto Contreras Garibay

LOS ACTORES

A mediados del año 2013, como producto de numerosas discusiones en diferentes escenarios, se inició en nuestro país un debate en torno a la legalización de la marihuana. De hecho, a tal grado llegó la discusión que se desarrolló el Foro sobre Políticas Públicas en Materia de Drogas para la Ciudad de México.

En el ámbito social, Aníbal Enrique Quiñonez, representante de la Organización de los Estados Americanos (OEA) en México, celebró que hubiese comenzado ese debate sobre el tema en la capital del país, toda vez que, según manifestó, hay datos que demuestran que la producción ilegal de drogas afecta la economía y la gobernabilidad de la región.
Por su parte, el representante de la Oficina de Enlace de la Organización de las Naciones Unidas (ONU), Antonio Mazzitelli, señaló que legalizar el consumo de marihuana implica “banalizar” su uso entre los jóvenes y provoca que se le vea con normalidad. Agregó que la ONU rechaza que esta acción contribuya a reducir la economía del crimen organizado, pues las células criminales buscarían otras actividades (como el tráfico de personas) para contrarrestar sus pérdidas.

En ese mismo contexto, Edgar Elías Azar, presidente del Tribunal Superior de Justicia del Distrito Federal (TSJDF), indicó que no hay argumento jurídico que prohíba a la capital presentar iniciativas sobre el tema de la legalización de la marihuana.

Como podemos ver, este foro mostró múltiples aristas en torno al problema. Pero y la ciencia, ¿qué dice al respecto? Hablaremos aquí, simple y sencillamente, de las propiedades de la marihuana y del alcohol y narraremos algunos interesantes resultados que diferentes expertos y estudiosos han hallado, sin pronunciarnos en cuanto a su legalización o prohibición.

La marihuana

El National Institute on Drug Abuse (NIDA) de los Estados Unidos define a la Cannabis sativa como un vegetal dioico, es decir, que tiene plantas macho y hembra que crecen por separado, y que puede llegar a medir unos seis metros de altura en las condiciones más favorables. En ambientes húmedos segrega una gran cantidad de resina, lo que la hace pegajosa al tacto, característica que constituye un mecanismo de defensa ante esa humedad,según señalan algunos estudiosos.

La planta tiene alrededor de sesenta componentes, entre ellos el tetrahidrocannabinol (THC), que es el componente más conocido y que tiene la mayor actividad psicoactiva. La mayor parte de tales componentes se hallanen las flores de la planta hembra; las hojas y los tallos los contienen en una menor proporción.

El cultivo clandestino ha desarrollado variedades hasta ahora desconocidas, denominadas de forma genérica “sin semilla”, las cuales tienen una porcentaje mucho mayor de cannabinoles que las cultivadas en forma tradicional o silvestre.

Todas las partes de esta planta contienen THC en mayor o menor cantidad, lo que depende de múltiples factores, especialmente de la forma de recolección y cultivo. Los cigarrillos de marihuana consumidos en los años setenta contenían ente 5 y 30 miligramos de THC, aproximadamente; pero hoy, debido a las variedades de la planta y a la forma del cultivo, puede alcanzar hasta los 150 miligramos (o el doble, si hablamos de la resina), lo que supone entre cinco y diez veces más contenido psicoactivo en cada cigarrillo.

En el caso específico de la marihuana, el medio de consumo consiste en un preparado de hojas secas y flores que contiene entre 6% y 14% de THC (en ocasiones puede superar este porcentaje). Por lo general, esta droga se fuma, aunque hay casos en que se come y hasta se toma.

En cuanto a los efectos psíquicos al ser fumada, la marihuana suele provocar euforia y hace que el usuario muestre una tendencia a la risa fácil y alteraciones en el sentido del tiempo o en la secuencia de los acontecimientos; asimismo, aumenta considerablemente la percepción de los colores y sonidos. A dosis elevadas puede provocar despersonalización, fuga de ideas, trastornos de la memoria, estados de pánico, alucinaciones y psicosis de tipo paranoide o esquizofrénico (psicosis por consumo). A la fase de euforia le sigue por lo general otra depresiva, caracterizada por un aumento del sueño.

En cuanto a sus efectos físicos, el consumo de marihuana provoca tos seca, taquicardia, irritación conjuntiva y un ligero aumento de la presión arterial. Si la dosis es elevada se produce el efecto contrario. También puede aparecer resequedad de boca, presión ocular aumentada, desorientación e incapacidad para concentrarse.

Cuando se fuma, produce un aumento del volumen y la frecuencia cardiaca, lo que puede representar un riesgo en personas que padecen enfermedades cardiovasculares.

El alcohol

El NIDA define al alcohol de vino, alcohol etílico o etanol como un líquido transparente e incoloro, con sabor a quemado y un característico olor agradable debido a la fermentación de azúcares y al etileno o acetileno que contiene en pequeñas cantidades, o bien por la pulpa de la madera en que se le procesa. Es este último alcohol el que se encuentra en bebidas tales como la cerveza, el vino, el ron, el vodka o el brandy, entre muchas otras.

Debido a su bajo punto de congelación, esta sustancia ha sido empleada de muy diversas maneras: como desinfectante, como fluido en los termómetros que miden temperaturas inferiores al punto de congelación del mercurio (–40 °C) o como anticongelante en los radiadores de los automóviles.

Existen muchas evidencias escritas que datan de hace más de 5 mil años sobre el uso de la cerveza, el vino y otras bebidas alcohólicas entre los sumerios, pero también en muchas otras culturas. La cerveza más antigua que se conoce es la elaborada a base de trigo que se consumía en Soria, en la actual España, hace unos 4,400 años, en plena Edad del Cobre.

No obstante sus actuales avances, el proceso de destilación aplicado a las bebidas fermentadas se remonta al siglo VII de nuestra era; es el caso del vino preparado por los árabes, quienes lo habían aprendido de antiguos alquimistas.

El alcohol bebible se obtiene de varias fuentes, pero esencialmente de la fermentación o destilación de granos como el maíz; de cereales como el arroz; de frutos como la uva, el plátano, la naranja o las ciruelas, o bien del destilado de la caña de azúcar, entre las más frecuentes.

El alcohol afecta al sistema nervioso central antes que a cualquier otro órgano. Ingerirlo en exceso y durante periodos prolongados puede provocar daño cerebral. Una creencia popular señala que ingerir alcohol incrementa la excitación sexual, pero lo que en realidad ocurre es que deprime la actividad de ciertos centros cerebrales. La sensación de excitación se debe precisamente a que, al deprimirse esos centros cerebrales, se reducen las tensiones y las inhibiciones, por lo que la persona experimenta sensaciones expandidas de sociabilidad y euforia.
Cabe resaltar que si la concentración de alcohol excede ciertos niveles en la sangre, interfiere con los procesos mentales superiores, de modo que la percepción visual sufre distorsiones y deterioro. La coordinación motora, el equilibrio, el lenguaje y la visión sufren también fuertes alteraciones.

Grandes cantidades de ingesta de alcohol reducen el dolor y las molestias corporales e inducen el sueño; su uso continuo irrita las paredes estomacales de tal manera que llegan incluso a desarrollarse úlceras. Además de esto, el alcohol tiende a acumular grasa en el hígado, lo que daña el funcionamiento de este órgano.

ESCENARIOS DE REALIDAD

El alcohol provoca daño cerebral, no así la marihuana

Señalamientos aislados refieren que la cannabis daña las neuronas; no obstante, un estudio publicado el Journal Neurotoxicology and Teratology describe que de hecho la marihuana tiene propiedades neuroprotectoras. El que el alcohol produce daño cerebral, por otra parte, es algo evidente y medible.

Nadie muere por culpa de la cannabis

Según el Centro para el Control de Enfermedades (CDC), cada año mueren 37 mil personas en Estados Unidos a causa de diversos problemas de salud relacionados con el alcohol. Este organismo gubernamental, por otra parte, ni siquiera tiene una categoría para indicar que la causa de muerte de una persona es la cannabis.

Un ser humano no puede sufrir una sobredosis de cannabis

La revista American Scientist detalla en un estudio que es imposible fumar tanta marihuana como para morir, incluso en el curso de una vida normal, a diferencia del alcohol. De hecho, la intoxicación por alcohol puede ocurrir con apenas diez unidades de la dosis que provoca los efectos deseables de la bebida, lo que hace de esta sustancia una de las drogas más tóxicas conocidas.

La marihuana requeriría, teóricamente, una dosis miles de veces mayor a la que una persona se sometería en condiciones de uso “normales”. Sin embargo, nadie ha muerto por una sobredosis de cannabis.

El alcohol es más adictivo que la marihuana

Estudios presentados por el NIDA muestran que hay ciertos factores que hacen de la marihuana una sustancia menos adictiva que el alcohol, en especial el hecho de que el cuerpo resiente mucho más el síndrome de abstinencia en los alcohólicos; dejar de fumar marihuana no produce tales síntomas. Los alcohólicos desarrollan dependencia y tolerancia físicas al alcohol, no así los fumadores de marihuana.

Los costos de salud son mayores por el alcohol que por la cannabis

Según datos del National Health Services en los Estados Unidos, de acuerdo con información amplia desarrollada y con estudios basados en estadísticas del año 2012, los costos que el servicio estatal de salud debe absorber por daños a la salud provocados por el alcohol son ocho veces mayores que los causados por el consumo de la cannabis.
El costo anual sería aproximadamente de 165 dólares por cada consumidor de alcohol, comparado con los 20 dólares que requerirían los usuarios de cannabis.

La ingesta de alcohol incrementa el riesgo de daños en el consumidor

Un estudio del año 2011, aparecido en la revista especializada Alcoholism: Clinical & Experimental Research, encontró que 36% de los casos de hospitalización por violencia y 21% de lesiones habían sido provocados por la ingesta alcohólica de los pacientes o por alguien que se hallaba bajo los efectos del alcohol.

Por otro lado, según la American Journal of Emergency Medicine, un usuario de cannabis rara vez visitará durante toda su vida la sala de emergencias a causa del consumo de esta sustancia. Esto podría explicarse, según el Consejo Británico de Atención al Abuso de Drogas, porque la cannabis “no parece incrementar el comportamiento de toma de riesgos”.

Ello significa que la cannabis rara vez contribuye a la violencia dirigida tanto contra otros como hacia uno mismo, mientras que el alcohol es una causa mayor de daño deliberado a uno mismo, accidentes domésticos y violencia.

El alcohol está asociado al cáncer, pero no la marihuana

El alcohol está asociado a diversos tipos de cáncer en el esófago, estómago, colon, pulmones, páncreas, hígado y próstata. Por su parte, se podría suponer que la ingesta de cannabis está asociada al cáncer de pulmón, pero un estudio de Donald Tashkin, neumólogo de la Universidad de California en Los Ángeles, en el que contrastó la incidencia de cáncer en fumadores de tabaco y de cannabis, concluyó que la gente que fuma marihuana tenía una menor incidencia de cáncer que aquellos que no fumaban.

Esta incidencia aumenta sobre todo porque la ingesta de tabaco está directamente relacionada –sobre todo debido a las exigencias del entorno social– con la de alcohol; sin embargo, tanto el tabaco como el alcohol están permitidos por las leyes.
Alcohol, marihuana… ¿ambos o ninguno?

Para el lector interesado:
  • American Journal of Emergency Medicine: http://www.journals.elsevierhealth.com/periodicals/yajem
  • Center for Disease Control and Prevention: http://www.cdc.gov/
  • Consejo Británico: www.britishcouncil.org
  • http://www.eluniversal.com.mx/ciudad-metropoli/2013/impreso/inicia-aldf-mesas-sobre-regulacionde-mariguana-118228.html
  • Jacobusa, J., McQueenyg, T., Bavab, S., Schweinsburge, B.C., Frank, L.R. Yang, T.T.
  • National Health Services Inc.: http://nhsinc.org/
  • National Institute on Drug Abuse: http://www.nida.com/
  • Periódico El Financiero: http://www.elfinanciero.com.mx/opinion/columnas/enrique-quintana/27225-la-economia-de-la-legalizacion-de-ladroga.html
  • Periódico El Universal en Línea: http://www.eluniversal.com.mx/ciudadmetropoli/2013/debate-mariguanatsjdf-azar-947291.html
  • Tapert S.F. (2009). White matter integrity in adolescents with histories of marijuana use and binge drinking. Neurotoxicology and Teratology, 31(6), 349-355.
  • The Washington Post: http://www.washingtonpost.com/wp-dyn/content/article/2006/05/25/AR2006052501729.html


LA NATURALEZA DE LAS MATEMÁTICAS


Capítulo 2: LA NATURALEZA DE LAS MATEMÁTICAS

Las matemáticas dependen tanto de la lógica como de la creatividad, y están regidas por diversos propósitos prácticos y por su interés intrínseco. Para algunas personas, y no sólo para los matemáticos profesionales, la esencia de esta disciplina se encuentra en su belleza y en su reto intelectual Para otros, incluidos muchos científicos e ingenieros, su valor principal estriba en la forma en que se aplican a su propio trabajo. Ya que las matemáticas juegan ese papel central en la cultura moderna, es indispensable una comprensión básica de ellas en la formación científico. Para lograr esto, los estudiantes deben percatarse de que las matemáticas forman parte del quehacer científico, comprender la naturaleza del pensamiento matemático y familiarizarse con las ideas y habilidades de esta disciplina. Este capítulo aborda las matemáticas como parte del quehacer científico y luego como proceso o forma de pensamiento. 

PAUTAS Y RELACIONES

Las matemáticas son la ciencia de las pautas y las relaciones. Como disciplina teórica, exploran las posibles relaciones entre abstracciones, sin importar si éstas tienen homólogos en el mundo real. Las abstracciones pueden ser cualquier cosa, desde secuencias de números hasta figuras geométricas o series de ecuaciones. Si se propone, por ejemplo, "¿forma una pauta el intervalo entre números primos?" como pregunta teórica, los matemáticos se interesarán sólo en encontrar la pauta o probar que ésta no existe, pero no en buscar la utilidad que podría tener tal conocimiento. Cuando se deriva, por ejemplo, una expresión para el cambio en el área de cualquier cuerpo regular cuando su volumen se aproxima a cero, los matemáticos no manifiestan interés en la concordancia entre los cuerpos geométricos y los objetos físicos del mundo real.

Una línea fundamental de investigación en las matemáticas teóricas es identificar en cada campo de estudio un pequeño conjunto de ideas y reglas básicas a partir de las cuales puedan deducirse, por lógica, todas las demás ideas y reglas de interés en ese campo. Los matemáticos, como otros científicos, gozan en particular cuando descubren que partes de esa ciencia sin relación previa pueden ser derivables entre si o a partir de una teoría más general. Parte del sentido de belleza que muchas personas han percibido en esta ciencia no radica en hallar la más grande perfección o complejidad, sino al contrario, en encontrar un gran ahorro y sencillez en la representación y la comprobación. A medida que las matemáticas avanzan, se han encontrado más y más relaciones entre partes que se habían desarrollado por separado por ejemplo, entre las representaciones simbólicas del álgebra y las representaciones espaciales de la geometría. Estas interconexiones hacen posible que surjan intuiciones que deben desarrollarse en las diversas partes de la disciplina; juntas, fortalecen la creencia en la exactitud y unidad esencial de toda la estructura.

Las matemáticas son también una ciencia aplicada. Muchos matemáticos dedican sus energías a resolver problemas que se originan en el mundo de la experiencia. De igual manera, buscan pautas y relaciones; en el proceso utilizan técnicas similares a las que se emplean en esta ciencia puramente teórica. La diferencia es en gran medida de propósito. En contraste con las matemáticas teóricas, las aplicadas, en los ejemplos anteriores, podrían estudiar la pauta del intervalo de los números primos para desarrollar un nuevo sistema para codificar información numérica, más que como un problema abstracto. También podrían abordar el problema sobre el área/volumen como un paso en la concepción de un modelo para el estudio del comportamiento del cristal.

Los resultados de las matemáticas teóricas y aplicadas con frecuencia influyen entre sí. A menudo los descubrimientos de los matemáticos teóricos tienen un valor práctico no previsto algunas veces décadas después. Por ejemplo, el estudio de las propiedades matemáticas de acontecimientos que ocurren al azar condujo al conocimiento que más tarde hizo posible mejorar el diseño de los experimentos en las ciencias naturales y sociales. Por el contrario, al tratar de solucionar el problema del cobro justo a los usuarios del teléfono de larga distancia, los especialistas hicieron importantes descubrimientos sobre las matemáticas de redes complejas. Las matemáticas teóricas, a diferencia de otras ciencias, no están restringidas por el mundo real, pero a la larga contribuyen a entenderlo mejor.


MATEMÁTICAS, CIENCIA Y TECNOLOGÍA

Debido a su abstracción, las matemáticas son universales en un sentido en que no lo son otros campos del pensamiento humano. Tienen aplicaciones útiles en los negocios, la industria, la música, la historia, la política, los deportes, la medicina, la agricultura, la ingeniería y las ciencias naturales y sociales. Es muy amplia la relación entre las matemáticas y los otros campos de la ciencia básica y aplicada. Ello obedece a varias razones, incluidas las siguientes:
  • La relación entre la ciencia y las matemáticas tiene una larga historia, que data de muchos siglos. La ciencia le ofrece a las matemáticas problemas interesantes para investigar, y éstas le brindan a aquélla herramientas poderosas para el análisis de datos. Con frecuencia, los modelos abstractos que han sido estudiados por los matemáticos, por el puro interés que despiertan han resultado ser muy útiles para la ciencia tiempo después. La ciencia y las matemáticas están tratando de descubrir pautas y relaciones generales, y en este caso ambas son parte del mismo quehacer.
  • Las matemáticas son el principal lenguaje de la ciencia. El lenguaje simbólico matemático ha resultado ser en extremo valioso para expresar las ideas científicas sin ambigüedad. La declaración a = F/m no es sólo una manera abreviada de decir que la aceleración de un objeto depende de la fuerza que se le aplique y de su masa; sino que es un enunciado preciso de la relación cuantitativa entre esas variables. Más importante aún, las matemáticas proporcionan la gramática de la ciencia las reglas para el análisis riguroso de ideas científicas y datos.
  • Las matemáticas y la ciencia tienen muchas características en común. Estas incluyen la creencia en un orden comprensible; una interacción de imaginación y lógica rigurosa; ideales de honestidad y franqueza; la importancia decisiva de la crítica de los compañeros; el valor atribuido a ser el primero en hacer un descubrimiento clave; abarcar el ámbito internacional; e incluso, con el desarrollo de poderosas computadoras electrónicas, ser capaz de utilizar la tecnología para abrir nuevos campos de investigación.
  • Las matemáticas y la tecnología también han desarrollado una relación productiva mutua. Las matemáticas de las relaciones y cadenas lógicas, por ejemplo, han contribuido considerablemente al diseño del hardware computacional y a las técnicas de programación. Las matemáticas también ayudan de manera importante a la ingeniería, como en la descripción de sistemas complejos cuyo comportamiento puede ser simulado por la computadora. En tales simulaciones, pueden variarse las características del diseño y las condiciones de operación como un medio para encontrar diseños óptimos. Por su parte, la tecnología computacional ha abierto áreas totalmente nuevas en las matemáticas, aun en la misma naturaleza de la comprobación, y también continúa ayudando a resolver problemas anteriormente atemorizantes.

LA INVESTIGACIÓN MATEMÁTICA

El uso de las matemáticas para expresar ideas o resolver problemas comprende por lo menos tres fases: 1. representar de manera abstracta algunos aspectos de las cosas; 2. manejar las abstracciones mediante reglas de lógica para hallar nuevas relaciones entre ellas, y 3. ver si las nuevas relaciones indican algo útil sobre las cosas originales.

Abstracción y representación simbólica

El pensamiento matemático comienza con frecuencia con el proceso de abstracción esto es, observar una similitud entre dos o más acontecimientos u objetos. Los aspectos que tienen en común, ya sea concretos o hipotéticos, se pueden representar por símbolos como los números, letras, otros signos, diagramas, construcciones geométricas o incluso palabras. Todos los números son abstracciones que representan el tamaño de conjuntos de cosas y sucesos, o el orden de los elementos en una serie. El círculo como concepto es una abstracción derivada de caras humanas, flores, ruedas, u olas pequeñas que se expanden; la letra A puede ser una abstracción para el área de objetos de cualquier forma, para la aceleración de todos los objetos móviles o para aquellos que tienen una propiedad específica; el símbolo + representa un proceso de adición, aun cuando uno se encuentre sumando manzanas o naranjas, horas o millas por hora. Y las abstracciones no se hacen sólo a partir de objetos o procesos concretos; también pueden realizarse con base en otras abstracciones, como las clases de números (los números pares, por ejemplo).
Tal abstracción permite a los matemáticos concentrarse en ciertas características de los objetos, además de que les evita la necesidad de guardar continuamente otras en su mente. En lo que a las matemáticas se refiere, no importa si un triángulo representa el área de un velero o la convergencia de dos líneas visuales sobre una estrella; los matemáticos pueden trabajar con ambos conceptos de igual manera. El ahorro de esfuerzo resultante es muy útil siempre y cuando al hacer la abstracción se ponga cuidado en no soslayar las características que juegan un papel importante en la determinación de los resultados de los sucesos que se están estudiando.

Manipulación de los enunciados matemáticos

Una vez que se han hecho las abstracciones y se han seleccionado las representaciones simbólicas de ellas, los símbolos se pueden combinar y recombinar de diversas maneras de acuerdo con reglas definidas con exactitud. En ocasiones, eso se lleva a cabo teniendo en mente un objetivo fijo; en otras, se hace en el contexto de un experimento o prueba para ver lo que sucede. A veces, una manipulación apropiada se puede identificar fácilmente a partir del significado intuitivo de las palabras y símbolos de que se compone; en otras ocasiones, una serie útil de manipulaciones se tiene que resolver por tanteo.

Es común que el conjunto de símbolos se combine en enunciados que expresan ideas o proposiciones. Por ejemplo, el símbolo A para el área de cualquier cuadrado se puede combinar con la letra s que representa la longitud del lado del cuadrado, para formar la expresión A = s2. Esta ecuación específica de qué manera se relaciona el área con el lado y también implica que no depende de nada mas. Las reglas del álgebra común se pueden utilizar, entonces, para descubrir que si se duplica la longitud de los lados de un cuadrado, el área de éste se cuadruplica. En sí, este conocimiento hace posible que se descubra lo que le sucede al área de un cuadrado sin importar cuánto varíe la longitud de sus lados y, por el contrario, cómo cualquier cambio en el área afecta a los lados.

El discernimiento matemático en las relaciones abstractas ha aumentado a lo largo de miles de años y todavía sigue ampliándose y en ocasiones se revisa. Aunque las matemáticas comenzaron en la experiencia concreta de contar y medir, han evolucionado a través de muchas etapas de abstracción y ahora dependen mucho más de la lógica interna que de la demostración mecánica. Entonces, en cierto sentido, la manipulación de las abstracciones es casi un juego: comenzar con algunas reglas básicas, después hacer cualquier movimiento que las cumpla el cual incluye la invención de reglas adicionales y encontrar nuevas relaciones entre las antiguas. La prueba para validar las ideas nuevas consiste en que sean congruentes y se relacionen lógicamente con las demás.

Aplicación

Los procesos matemáticos pueden llevar a un tipo de modelo de una cosa, a partir de los cuales se obtendrían profundizaciones de la cosa misma. Cualquier relación matemática que se obtenga por medio de la manipulación de enunciados abstractos puede o no transmitir algo verdadero sobre el objeto que se está modelando. Por ejemplo, si a dos tazas de agua se agregan otras tres, y la operación matemática abstracta 2 + 3 = 5 se utiliza para calcular el total, la respuesta correcta es cinco tazas de agua. No obstante, si a dos tazas de azúcar se añaden tres tazas de té caliente y se realiza la misma operación, cinco es una respuesta incorrecta, pues esa suma da por resultado sólo un poco más de cuatro tazas de té muy dulce. La simple suma de volúmenes es apropiada para la primera situación, pero no para la segunda lo que podría haberse predicho sólo conociendo algo sobre las diferencias físicas en los dos casos. Así, para utilizar e interpretar bien las matemáticas, es necesario estar interesado en algo más que la validez matemática de las operaciones abstractas, así como tomar en consideración qué tan bien se corresponden con las propiedades de las cosas que representan.
Algunas veces, el sentido común es suficiente para decidir silos resultados de las matemáticas son apropiados. Por ejemplo, para calcular la estatura de una joven cuando tenga 20 años si en la actualidad mide 1.63 m y crece a una tasa de 2.54 cm por año, el sentido común sugiere rechazar la respuesta simple de "tasa por tiempo" de 2.13 m como muy improbable, y dirigirse a algún otro modelo matemático, como las curvas que aproximan valores restrictivos. Sin embargo, en ocasiones, puede ser difícil saber qué tan correctos son los resultados matemáticos por ejemplo, al tratar de predecir los precios en la bolsa de valores, o los terremotos.
Con frecuencia, sucede que una sesión de razonamiento matemático no produce conclusiones satisfactorias; entonces se intenta efectuar cambios en la manera en que se hizo la representación o en las mismas operaciones. De hecho, se dan saltos entre pasos hacia adelante y hacia atrás y no hay reglas que determinen cómo se debe proceder. El proceso avanza típicamente a empujones, con muchas vueltas erróneas y callejones sin salida. Este proceso continúa hasta que los resultados son suficientemente buenos.
Pero, ¿qué grado de exactitud es el suficiente? La respuesta depende de la forma en que se vaya a utilizar el resultado, las consecuencias del error, y el posible costo de modelar y estimar una respuesta más precisa. Por ejemplo, un error de 1% al calcular la cantidad de azúcar en una receta para pastel podría ser insignificante, pero un grado de error similar en el cálculo de la trayectoria de una sonda espacial podría resultar desastroso. Sin embargo, la importancia de la pregunta "suficiente" ha llevado al desarrollo de procesos matemáticos para estimar qué tan lejos podrían llegar los resultados y cuánto cálculo se requeriría para obtener el grado de precisión deseado.


EL MUNDO MATEMÁTICO


EL MUNDO MATEMÁTICO

La matemática es principalmente un proceso de pensamiento que implica la construcción y aplicación de una serie de ideas abstractas relacionadas lógicamente. Estas ideas, por lo general, surgen de la necesidad de resolver problemas en la ciencia, la tecnología y la vida cotidiana que van desde cómo modelar ciertos aspectos de un problema científico complejo hasta cómo hacer el balance de un talonario de cheques. Este capítulo presenta recomendaciones sobre las ideas matemáticas básicas, en particular aquéllas con aplicaciones prácticas, que en conjunto desempeñan un papel clave en casi todas las actividades humanas. En el capítulo 2, se caracterizó a las matemáticas como un proceso de modelación en el cual se hacen y manipulan abstracciones y las implicaciones se comprueban contra la situación original. Aquí, se enfocan siete ejemplos de los tipos de patrones matemáticos que están disponibles para tal modelación: 1. naturaleza y uso de los números, 2. relaciones simbólicas, 3. figuras, 4. incertidumbre, 5. resumen de datos, 6. muestreo de datos, y 7. raciocinio.

NATURALEZA Y USO DE LOS NÚMEROS

Hay varias clases de números que en combinación con una lógica para relacionarse forman sistemas abstractos interesantes y pueden ser útiles en una variedad de modos diferentes. El concepto antiguo de número posiblemente se originó en la necesidad de contar cuántos objetos había en un conjunto de cosas. Así, los dedos, guijarros en recipientes, signos sobre tablas de barro, muescas en palos y nudos en cuerdas fueron todas formas primitivas de recordar y representar cantidades. En épocas más recientes, durante los últimos 2 000 años, se han usado distintos sistemas de escritura para representar números. El sistema de numeración arábigo, tan común en la actualidad, está basado en 10 símbolos (0, 1, 2..., 9) y reglas para combinarlos, en las cuales la posición es decisiva (por ejemplo, en 203, el 3 representa tres unidades, el 2 significa dos centenas, y el cero se coloca en el lugar de las decenas, que no existen). En el sistema binario el lenguaje matemático de las computadorassólo dos símbolos, O y 1, se pueden combinar en una serie para representar cualquier número. El sistema de numeración romano, el cual se utiliza todavía para algunos propósitos (pero rara vez para calcular), se compone de unas cuantas letras del alfabeto y reglas para combinarlas (por ejemplo, IV para el cuatro, X para el 10, y XIV para el 14, pero no hay símbolo para el cero).

Hay diferentes clases de números. Los que provienen de contar objetos son los números naturales, los cuales son los más utilizados en la vida diaria. Un número natural en si es una abstracción de la cantidad de cosas existente en un conjunto, pero no de los objetos mismos. El "tres" puede referirse a manzanas, piedras, personas o cualquier otra cosa. Pero en casi todas las situaciones prácticas se intenta saber lo que son los objetos, así como la cantidad que hay. Por tanto, la respuesta a la mayor parte de los cálculos es una cantidad un número vinculado con una unidad. Si ciertas personas recorrieron 165 kilómetros en 3 horas, su velocidad promedio fue 55km por hora, no 55. En este ejemplo, 165, 3 y 55 son números: 165 km, 3 horas y 55 km por hora son cantidades. Las unidades son importantes para no olvidar el significado de los números.

Las fracciones son números que se usan para designar una parte de algo o comparar dos cantidades. Un tipo común de comparación sucede cuando se miden ciertas cantidades como la longitud y el peso, esto es, se comparan con una unidad estándar como el metro o el kilogramo. Se usan por lo general dos clases de expresiones para representar fracciones, que son equivalentes numéricamente. Por ejemplo, la fracción común 3/4 y la fracción decimal 0.75 representan ambas el mismo número. No obstante, las dos expresiones empleadas para representar cantidades pueden tener implicaciones diferentes: 3/4 podría emplearse para significar simplemente más cercano a 3/4 que a 2/4 o 4/4, mientras que 0.75 puede implicar que es más cercano a 0.75 que a 0.74 o 0.76 lo cual es una especificación mucho más precisa. Los números naturales y las fracciones pueden usarse juntos: 1 1/4, 1.25, 125/100 y 5/4, por ejemplo, todos significan la misma cantidad numéricamente.
Se proporciona más flexibilidad a las matemáticas utilizando números negativos, los cuales pueden representarse en una recta numérica. Esta muestra números consecutivos a intervalos iguales a lo largo de una línea recta cuyo centro es el cero. Los números a un lado del cero se llaman positivos, mientras que los del otro son negativos. Si los números a la derecha del cero son positivos, los números a la izquierda son negativos; si la distancia sobre el nivel del mar es positiva, la distancia debajo de éste es negativa; silos ingresos son positivos, las deudas son negativas; si 2:15 es el tiempo programado de despegue, 2:10 es "menos 5 minutos". La serie completa de números enteros (positivos, cero y negativos) permite restar cualquier número de otro obteniendo un resultado.



Calcular es el manejo de números y otros símbolos para llegar a un nuevo enunciado matemático. Estos otros símbolos pueden ser letras que se utilizan para representar números. Por ejemplo, al tratar de resolver un problema especifico, se podría poner la x en lugar de cualquier número que cumpliera las condiciones del problema. También hay símbolos para dar a entender qué operaciones llevar a cabo con los signos numéricos. Los más comunes son +, , x y / (aunque hay otros). Las operaciones + y son inversas entre si, como también lo son x y /: una operación deshace lo que realiza la otra. La expresión a/b puede significar "la cantidad a comparada con la cantidad b", "el número que se obtiene de dividir a entre b" o "a partes de tamaño 1/b". Los paréntesis en la expresión a(b + c) indican multiplicar a por la suma de b + c. Los matemáticos estudian los sistemas de números para descubrir sus propiedades y relaciones, así como para idear reglas para el manejo de símbolos matemáticos por procedimientos que den resultados válidos.

Los números tienen diferentes usos, algunos de los cuales no son cuantitativos o del todo lógicos. Al contar, por ejemplo, el cero tiene un significado especial de nada. Sin embargo, en la escala común de temperatura, el cero es sólo una posición arbitraria y no significa la ausencia de temperatura (o de cualquier otra cosa). Se pueden utilizar los números para poner objetos en orden e indicar cuál es el más alto o más bajo de los demás no para especificar cuánto (por ejemplo, el orden de los ganadores en una carrera, los domicilios en una calle o las puntuaciones en pruebas psicológicas cuyas diferencias numéricas no tienen un significado uniforme). También los números suelen emplearse para identificar objetos sin ningún orden significativo, como los números telefónicos y los que se utilizan sobre las playeras deportivas y placas.

Aparte de su aplicación en el mundo de la experiencia cotidiana, los números son interesantes por sí mismos. Desde el principio de la historia, la gente se ha hecho preguntas como: ¿existe un número más grande que todos los demás? ¿Existe uno más pequeño que todos los otros? ¿Puede obtenerse todo número posible dividiendo algún número entero entre otro? Algunos números, como la razón de la longitud de una circunferencia a la longitud de su diámetro (pi), atraen la atención de muchos profesionistas, no sólo la de los matemáticos.

RELACIONES SIMBÓLICAS

Los números y las relaciones entre ellos pueden representarse como enunciados simbólicos, los cuales brindan un medio para modelar, investigar y mostrar las relaciones del mundo real. Es raro el interés en una sola cantidad o categoría; generalmente interesa la relación entre ellas (la relación entre edad y estatura, temperatura y hora del día, partida política e ingreso anual, sexo y ocupación). Esas comparaciones se pueden expresar utilizando ilustraciones diagramas y gráficas. cuadros, ecuaciones algebraicas o palabras. Las gráficas son especialmente útiles para examinar las relaciones entre cantidades.

El álgebra es un campo de las matemáticas que explora las relaciones entre cantidades diferentes representándolas mediante símbolos, y manipulando las expresiones que las relacionan. Aveces, una expresión simbólica implica que sólo un valor o conjunto de valores la harán verdadera. Por ejemplo, la expresión 2A + 4 = 10 es verdadera si (y sólo si) A = 3. No obstante, con frecuencia, una expresión algebraica permite que una cantidad tome una serie de valores e implica para cada uno de ellas el valor correspondiente de otra cantidad. Por ejemplo, la expresión A = s2 especifica un valor para la variable A que corresponde a cualquier elección de un valor para la variable s.

Hay muchas clases posibles de relaciones entre una variable y otra. Un conjunto básico de ejemplos sencillos de estas relaciones incluye: 1. directamente proporcional (una cantidad siempre mantiene la misma proporción con otra); 2. inversamente proporcional (a medida que una cantidad aumenta, la otra disminuye en proporción); 3. acelerada (cuando una cantidad se incrementa uniformemente, la otra aumenta más y más rápido); 4. convergente (a medida que cierta cantidad se incrementa sin limite, la otra se aproximará más y más a algún valor limite); 5. cíclica (al incrementarse una cantidad, la otra aumenta y disminuye en ciclos repetidos), y 6. escalonada (al cambiar una cantidad continuamente, la otra lo hace en saltos).

Las expresiones simbólicas se pueden manipular por medio de las reglas de la lógica matemática para producir otras con la misma relación, las cuales pueden mostrar algún aspecto interesante de manera más clara. Por ejemplo, se podría establecer mediante símbolos la relación entre la anchura de una página, P, la longitud de una línea de tipos, L, y el ancho de cada margen vertical, m:P=L + 2m. Esta ecuación es un modelo útil para determinar el diseño de la página. Se podría volver a arreglar lógicamente para obtener otras expresiones verdaderas de la misma relación básica: por ejemplo, las ecuaciones L = P 2m o m = (P L)/2, las cuales podrían ser más adecuadas para calcular los valores reales de L o m.

En algunos casos se quiere encontrar valores que satisfagan dos o más relaciones diferentes al mismo tiempo. Por ejemplo, se podría agregar al modelo del diseño de la página otra condición: que la longitud de la línea de tipos sea 2/3 de la anchura de la página: L = 2/3 P. Combinando esta ecuación con m = (P L)/2, por lógica, el resultado será m = 1/6 P. Esta nueva ecuación, derivada de las dos anteriores, especifica los únicos valores para m que satisfarán a ambas relaciones. En este sencillo ejemplo, la especificación para el ancho del margen puede resolverse fácilmente sin el uso de expresiones simbólicas. Sin embargo, en otros casos, la representación y manejo simbólicos son imprescindibles para llegar a una solución o para ver si ésta es incluso posible.

Con frecuencia, la cantidad que más interesa es la rapidez con que algo cambia, más que el cambio mismo. En algunos casos, el índice de cambio de una cantidad depende de otra, por ejemplo, el cambio de velocidad de un objeto en movimiento es proporcional a la fuerza que se le aplica. Sin embargo, en otras situaciones, el índice de cambio es proporcional a la cantidad misma, por ejemplo, el número de recién nacidos dentro de una población de ratones depende del número y sexo de los animales ya existentes.


FIGURAS

Los modelos espaciales se pueden representar a través de un grupo muy pequeño de formas y relaciones geométricas fundamentales que tienen representación simbólica correspondiente. Para comprender el mundo, la mente humana depende en gran medida de su percepción de las figuras y modelos. Todas las cosas existentes, como edificios, vehículos, juguetes y pirámides, y las figuras que son tan familiares en la naturaleza, como animales, hojas, piedras, flores, la Luna y el Sol, con frecuencia se pueden caracterizar en términos de su forma geométrica. Algunas de las ideas y términos de la geometría se han convertido en parte del lenguaje cotidiano. Aunque los objetos reales jamás concuerdan exactamente con una figura geométrica, sí se aproximan, de modo que lo que se sabe sobre las figuras y relaciones geométricas se puede aplicar a los objetos. Para muchos propósitos, es suficiente familiarizarse con puntos, líneas, planos, triángulos, rectángulos, cuadrados, círculos y elipses; cuerpos rectangulares y esferas; relaciones de semejanza y congruencia; relaciones de convexidad, concavidad, intersección y tangentes; ángulos entre rectas o planos; relaciones paralelas y perpendiculares entre líneas y planos; formas de simetría, como la sustitución, reflexión y rotación, y el teorema de Pitágoras.

Tanto la figura como la escala pueden tener consecuencias importantes para la realización de sistemas. Por ejemplo, las conexiones triangulares maximizan la rigidez, las superficies lisas disminuyen la turbulencia y los recipientes esféricos minimizan el área de la superficie para cualquier volumen o masa dada. Cambiar el tamaño de objetos manteniendo la misma forma puede tener efectos profundos debido a la geometría de la escala: el área varía como el cuadrado de las dimensiones lineales, y el volumen lo hace como el cubo. Por otro lado, algunas clases de patrones particularmente interesantes conocidos como fractales parecen ser muy similares entre si cuando se observan a una escala cualquiera y algunos fenómenos naturales (como la forma de las nubes, montañas y litorales) parecen ser como eso.
Las relaciones geométricas también se pueden expresar a través de símbolos y números, y viceversa. Los sistemas coordenados son un medio común de relacionar los números con la geometría. Por poner el ejemplo más sencillo, cualquier número se puede representar como un punto único sobre una línea si primero se especifican puntos para representar el cero y el uno. Sobre cualquier superficie plana se pueden especificar las localizaciones sólo por un par de números o coordenadas. Por ejemplo, la distancia desde el lado izquierdo de un mapa y la distancia desde la base, o la distancia y dirección desde el centro del mapa.

Los sistemas coordenados son esenciales para realizar mapas precisos, pero hay algunas sutilezas. Por ejemplo, la superficie esférica aproximada de la Tierra no se puede representar sobre un mapa plano sin que haya distorsión. A unas cuantas docenas de millas, el problema es muy poco notorio, pero a una escala de cientos o miles de millas, la distorsión aparece necesariamente. Se puede hacer una variedad de representaciones aproximadas y cada una implica un tipo algo diferente en la distorsión de forma, área o distancia. Un tipo común de mapa exagera las áreas aparentes de las regiones cercanas a los polos (por ejemplo, Groenlandia y Alaska), mientras que otros tipos específicos representan de manera engañosa la distancia más corta entre dos lugares, o aun qué punto es adyacente a qué otro.

La interpretación matemática de la figura también incluye la descripción gráfica de las relaciones numéricas y simbólicas. Las cantidades se visualizan como longitudes o áreas (como en las gráficas de barras y de sectores circulares) o como distancias desde ejes de referencia (como en las gráficas lineales o planos esparcidos). La exposición gráfica hace posible identificar patrones de inmediato, que de otra forma no serian obvios: por ejemplo, tamaños relativos (proporciones o diferencias), índices de cambio (pendientes), discontinuidades abruptas (aumentos a intervalos), agrupación (distancias entre puntos marcados) y tendencias (cambio de pendientes o proyecciones). La matemática de las relaciones geométricas también ayuda en el análisis del diseño de estructuras complejas (moléculas proteínicas o alas de aviones) y redes lógicas (conexiones de células cerebrales o sistemas telefónicos de larga distancia). .


INCERTIDUMBRE

Probabilidad
El conocimiento sobre la manera en que opera el mundo está limitado por lo menos por cinco tipos de incertidumbre: 1. conocimiento inadecuado de todos los factores que pueden influir en algo; 2. número inadecuado de observaciones sobre esos factores; 3. falta de precisión en las observaciones; 4. carencia de modelos apropiados para combinar toda la información de modo significativo, y 5. capacidad inadecuada para calcular a partir de los modelos. Es posible predecir algunos sucesos con mucha precisión (eclipses), otros con meros exactitud (elecciones) y otros con muy poca certeza (terremotos). Aunque la certidumbre absoluta es casi imposible de conseguir, con frecuencia se puede estimar la probabilidad sea grande o pequeña de que algunas cosas sucedan y el margen probable de error de la estimación.

Con frecuencia resulta útil expresar la probabilidad en forma numérica. Por lo general se utiliza una escala de probabilidad de O a 1, donde el O indica la creencia de que algún suceso específico es seguro que no ocurrirá, el 1 indica la creencia de que es seguro que sucederá y el intervalo entre los dos indica certidumbre. Por ejemplo, una probabilidad de 0.9 indica que hay 9 oportunidades en 10 de que ocurra un suceso como se predijo; una probabilidad del 0.001 indica que hay solamente una oportunidad en 1 000 de que ocurra. También se pueden expresar las probabilidades como porcentajes, que van desde 0% (no hay certeza) hasta el 100% (certeza). Las incertidumbres también pueden expresarse como desigualdades: una probabilidad de 0.8 para un evento puede expresarse como las posibilidades de 8 a 2 (o 4 a 1) en favor de que ocurra.

Una manera para estimar la probabilidad de un evento es considerando los acaecimientos pasados. Si la situación actual es similar a las anteriores, entonces se pueden esperar resultados algo similares. Por ejemplo, si llovió el 10% de los días de verano del año pasado, se puede esperar que llueva aproximadamente el 10% de los días del siguiente verano. Así, una estimación razonable de la probabilidad de lluvia de cualquier día de verano es 0. 1 una oportunidad en 10. La información adicional puede cambiar la estimación de la probabilidad. Por ejemplo, pudo haber llovido el 40% de los días nublados del pasado verano; de modo que, si el día actual está nublado, se puede aumentar la estimación de 0.1 a 0.4 para la probabilidad de lluvia. Cuanto más se parezca la situación que interesa a aquélla de la que se tienen datos, mayor es la probabilidad de que la estimación resulte más acertada.

Otro enfoque para estimar las probabilidades es considerar los posibles y distintos resultados de un suceso específico. Por ejemplo, si hay 38 ranuras de amplitud igual en una ruleta rusa, se puede esperar que la bola caiga en cada ranura más o menos 1/38 veces. Las estimaciones de esa probabilidad teórica descansan en la suposición de que todos los resultados posibles son razonables y es igualmente probable que todos ocurran. Pero si ello no es cierto por ejemplo, si las ranuras no son de igual tamaño o si en ocasiones la bola se sale de la ruleta, la probabilidad calculada será errónea.
Las probabilidades son muy útiles para predecir proporciones de resultados en grandes cantidades de eventos. Una moneda lanzada al aire tiene una probabilidad de 50% de que caiga cara, aunque una persona no va conseguir precisamente 50% de caras en un número par de lances. Cuanto más se lance una moneda, será menos probable que uno consiga una cantidad precisa del 50%, pero la proporción más cercana de caras es probable que sea el teórico 50%. De igual manera, las compañías aseguradoras pueden, dentro de un rango de uno o dos puntos porcentuales, predecir la proporción de personas de 20 años que morirá en un año especifico, pero es probable que se equivoquen por miles de muertes totales y no tienen ninguna capacidad de predecir si alguien en particular que tenga 20 años morirá. En otras palabras, también es importante distinguir entre la proporción y la cifra real. Cuando hay una gran cantidad de sucesos similares, aun un resultado con una probabilidad muy pequeña de ocurrir puede suceder con mucha frecuencia. Por ejemplo, un examen médico con una probabilidad de 99% de ser correcto puede parecer muy preciso pero si ese examen se hubiera aplicado a un millón de personas, aproximadamente 10 000 individuos recibirían resultados falsos.


Resumen de datos

La información se encuentra alrededor de todos, a menudo en tan grandes cantidades que no es posible darle sentido. Un conjunto de datos se puede representar a través de un resumen de características que pueden revelar u ocultar aspectos importantes. La estadística es una rama de las matemáticas que desarrolla métodos útiles de organizar y analizar grandes cantidades de datos. Por ejemplo, para tener una idea de lo que es un conjunto de datos, se podría trazar cada caso en una recta numérica, y después inspeccionar la gráfica para ver dónde se acumulan los casos, dónde se separan unos de otros, dónde se encuentran los más altos y los más bajos, y así sucesivamente. De forma alternativa, el conjunto de datos se puede caracterizar de manera resumida describiendo dónde se halla su centro y cuánta variación hay alrededor de él.

El estadístico más conocido para resumir una distribución de datos es la media, o promedio común, pero se debe ser cuidadoso al usarla o interpretarla. Cuando los datos son discretos (como el número de hijos por familia), la media no podría ser un valor posible (por ejemplo, 2.2 hijos). Cuando los datos se inclinan mucho hacia un extremo, la media tampoco puede estar cerca de un valor común. Por ejemplo, una proporción pequeña de personas que tienen ingresos personales muy altos puede aumentar la media mucho más de lo que la mayoría de las personas concentradas en el extremo más bajo sería capaz de disminuirla. La mediana, la cual divide la mitad inferior de los datos de la mitad superior, es más significativa para muchos propósitos. Cuando sólo hay unos cuantos valores discretos de una cantidad, el tipo de promedio más informativo puede ser la moda, la cual es el valor único más común por ejemplo, el número más común de automóviles por familia en los Estados Unidos de América es 1.

En general, los promedios por sí mismos no hacen caso de la variación en los datos y pueden implicar más uniformidad de la que existe. Por ejemplo, la temperatura promedio en el planeta Mercurio de aproximadamente 150 F no suena tan mal hasta que uno considera que ésta oscila desde 3000 F hasta 3000 F bajo cero. El descuido de la variación puede ser particularmente engañoso cuando se comparan promedios. Por ejemplo, el hecho de que la estatura promedio de los hombres sea claramente mayor que la de las mujeres, se podría enunciar como "los hombres son más altos que las mujeres", en tanto que existen muchas mujeres que son más altas que muchos hombres. Por tanto, para interpretar promedios, es importante tener información sobre la variación dentro de los grupos, como la gama total de datos o la gama cubierta por el 50%. Una gráfica de todos los datos a lo largo de una recta numérica hace posible ver la forma en que se distribuyen los datos.

Con frecuencia se presentan datos resumidos que pretenden demostrar una relación entre dos variables, pero carecen de información esencial. Por ejemplo, la afirmación de que "más del 50% de las parejas casadas que tienen diferentes religiones se divorcian" no diría nada acerca del vínculo entre la religión y el divorcio a menos que se conozca también el porcentaje de parejas que se divorcian teniendo la misma religión. Sólo la comparación de los dos porcentajes podría indicar si existe una relación real. Aun entonces, es necesaria la precaución por los posibles sesgos en la manera en que se seleccionaron las muestras y por las diferencias en porcentaje que puedan ocurrir sólo por el azar al seleccionar la muestra. Los informes apropiados de esa información deberán incluir una descripción de posibles fuentes de sesgos y una estimación de la incertidumbre estadística en la comparación.


Dos cantidades se correlacionan en forma positiva si tener más de una se asocia con tener más de la otra. (Una correlación negativa significa que tener más de una se asocia con tener menos de la otra.) Pero incluso una correlación fuerte entre dos cantidades no significa que una sea necesariamente la causa de la otra. Una de ellas podría causar la otra, o ambas podrían ser el resultado común de un tercer factor. Por ejemplo, la expectativa de vida en una comunidad se correlaciona positivamente con el número promedio de teléfonos por casa. Uno podría buscar una explicación de por qué tener más teléfonos mejora la salud de los individuos o por qué las personas sanas compran más de estos aparatos. Sin embargo, es más probable que tanto la salud como el número de teléfonos sean la consecuencia del grado general de riqueza de la comunidad, lo cual afecta la calidad total de la nutrición y el cuidado médico, así como la inclinación de las personas a comprar teléfonos.


Muestreo de datos

La mayor parte de lo que se aprende sobre el mundo se obtiene de información basada en muestreos de lo que se está estudiando por ejemplo, muestras de formaciones rocosas, luz de las estrellas, televidentes, enfermos de cáncer, ballenas, números, etc.. Se hace uso de las muestras porque resultaría imposible, impráctico o demasiado costoso examinar el todo de algo, y porque una muestra, por lo general, es suficiente para la mayor parte de los propósitos. Al sacar conclusiones sobre un todo a partir de muestras, se deberán tomar en cuenta dos aspectos principales. Primero, se debe estar alerta a posibles sesgos originados por la forma en que se selecciona la muestra. Las fuentes comunes de sesgos al seleccionar muestras incluyen la conveniencia (por ejemplo, entrevistar sólo a los amigos o recoger solamente rocas de la superficie), la autoselección (por ejemplo, estudiar únicamente a la gente que coopera voluntariamente o a quienes regresan los cuestionarios), el fracaso para incluir a aquellos que se han retirado a lo largo del camino (por ejemplo, examinar sólo a estudiantes que permanecen en la escuela o a pacientes que siguen el curso de una terapéutica) y la decisión de usar sólo los datos que apoyen las propias concepciones previas.
El segundo aspecto importante que determina la utilidad de una muestra es su tamaño. Si ésta se obtiene sin sesgos en el método, entonces, cuanto más grande es, mayor es la probabilidad de que represente al todo con exactitud. Esto es así porque, cuanto mayor es la muestra, es más probable que los efectos menores de las variaciones debidas al puro azar estén en sus características resumidas. La probabilidad de extraer una conclusión equívoca disminuye a medida que el tamaño de la muestra se incrementa. Por ejemplo, para las muestras escogidas al azar, encontrar que 600 de una muestra de 1 000 tienen una cierta característica, es una evidencia mucho más fuerte de que una mayoría de la población presenta esa característica que descubrir que 6 de una muestra de 10 (o incluso 9 de 10) la tienen. Por otro lado, el tamaño real de la población total de la cual se extrae una muestra tiene poco efecto en la exactitud de los resultados de ésta. Una muestra aleatoria de 1 000 podría tener aproximadamente el mismo margen de error si se selecciona en una población de 10 000 o en una similar de 100 millones.


RACIOCINIO

Algunos aspectos del raciocinio tienen reglas lógicas claras, otros sólo poseen principios y otros más tienen espacio casi inilimitado para la creatividad (y desde luego para el error). Un argumento convincente requiere enunciados verdaderos y relaciones válidas entre ellos. Sin embargo, la lógica formal se interesa en la validez de las relaciones entre los enunciados, no si éstos son en realidad verdaderos. Es correcto desde un punto de vista lógico argumentar que si todos los pájaros vuelan y los pingüinos son pájaros, entonces los pingüinos vuelan. Pero la conclusión no es verdadera si las premisas no son verdaderas: ¿de verdad vuelan todos los pájaros y los pingüinos son realmente pájaros? El análisis de la verdad de las premisas es tan importante para un buen raciocinio como la lógica que opera en ellas. En este caso, ya que la lógica es correcta pero la conclusión es falsa (los pingüinos no pueden volar), una o ambas premisas deben de ser falsas (no todos los pájaros vuelan, o los pingüinos no son pájaros).

Los argumentos lógicos muy complejos se pueden construir a partir de un pequeño número de pasos lógicos, los cuales dependen del uso preciso de los términos básicos "si","y""o" y "no". Por ejemplo, el diagnóstico médico implica cadenas lógicas ramificadas como "si el paciente padece la enfermedad X o Y y también tiene un resultado de laboratorio B, pero no tiene antecedentes de C, entonces debe aplicarse el tratamiento D ". La solución de ese problema lógico puede requerir conocimiento experto de muchas relaciones, acceso a muchos datos para alimentar las relaciones y la habilidad para deducir cadenas ramificadas de operaciones lógicas. Ya que las computadoras pueden almacenar y devolver grandes cifras de relaciones y datos, además de que pueden realizar largas series de pasos lógicos muy rápido, se están utilizando cada vez más para ayudar a los expertos a resolver complejos problemas que de otra manera sería difícil o hasta imposible resolverlos. No obstante, no todos los problemas lógicos se pueden solucionar por computadora.

Las relaciones lógicas pueden distorsiorarse con facilidad. Por ejemplo, la proposición de que todos los pájaros pueden volar, no implica lógicamente que todas las criaturas que vuelen sean pájaros. Tan obvio como puede parecer este ejemplo sencillo, la distorsión ocurre a menudo, sobre todo en situaciones cargadas emocionalmente. Por ejemplo: "todos los prisioneros culpables rehusan testificar contra si mismos; el prisionero Sánchez se negó a testificar contra él mismo; por tanto, Sánchez es culpable."

Las distorsiones en lógica provienen a menudo de no distinguir entre las condiciones necesarias y las suficientes. Siempre se requiere una condición necesaria para una consecuencia, pero puede no ser suficiente por sí misma por ejemplo, ser ciudadano de la Unión Americana es necesario para ser electo presidente, pero no suficiente. Una condición que es suficiente para una consecuencia se basta a si misma, pero puede haber otras formas de llegar al mismo resultado ganar la lotería estatal es suficiente para convertirse en millonario, pero hay otras maneras. Sin embargo, una condición puede ser tanto necesaria como suficiente; por ejemplo, recibir la mayor parte de los votos electorales es una condición tanto necesaria para convertirse en presidente como suficiente para hacerlo, pues es la única forma.
La lógica tiene utilidad limitada para encontrar la solución a muchos problemas. Fuera de los modelos abstractos, con frecuencia, no se puede establecer con confianza la verdad de las premisas o las relaciones lógicas entre ellas. La lógica precisa requiere declaraciones como: "Si X es verdadera, entonces Y también es verdadera" (perro que ladra no muerde), y "X es verdadera" (el canuto ladra). Sin embargo, de manera típica, todos saben que "si X es verdadera, entonces Y también a menudo es verdadera" (un perro que ladra suele no morder) y "X parece ser aproximadamente verdadera casi todo el tiempo" (el canuto generalmente ladra). Por tanto, la lógica estricta se reemplaza con frecuencia por las probabilidades u otros tipos de razonamiento que conducen a resultados mucho menos certeros; por ejemplo, afirmar que en promedio la lluvia caerá antes del anochecer en el 70% de los días que tengan mañanas con condiciones meteorológicas similares a las del día de hoy.

Si se aplica la deducción lógica a una regla general (todas las criaturas con plumas vuelan), se puede llegar a una conclusión acerca de un caso particular o clase de casos (los pingüinos vuelan). Pero, ¿de dónde provienen las reglas generales? A menudo son generalizaciones hechas a partir de observaciones: descubrir un número de casos similares y suponer que lo que es verdad para ello es verdad para toda la clase ("toda criatura con plumas que he visto puede volar; por tanto, quizá todas puedan hacerlo"). O una regla general puede surgir de la imaginación, por medios no conocidos, con la esperanza de poder demostrar que algunos aspectos de los fenómenos se derivan lógicamente de ella (por ejemplo: "si fuera verdad que el Sol es el centro del movimiento de todos los planetas, incluida la Tierra, ¿tal sistema podría producir los movimientos aparentes en el cielo?").
Una vez que una regla general se ha elevado a la categoría de hipótesis. por cualesquiera medios, la lógica sirve para comprobar su validez. Si se descubre un caso contrario (una criatura con plumas que no puede volar), la hipótesis no es verdadera. Por otro lado, la única manera de probar lógicamente que una hipótesis general acerca de una clase es verdadera consiste en examinar todos los casos posibles (todas las aves), lo cual es difícil en la práctica y a veces imposible incluso en principio. Así, suele ser mucho más fácil probar que las hipótesis generales son lógicamente falsas que probar que son verdaderas. En la actualidad, las computadoras a veces hacen posible demostrar de manera convincente la verdad de generalizaciones matemáticas dudosas, incluso si no se prueban, sometiendo a prueba enormes cantidades de casos específicos.

La ciencia puede usar la lógica deductiva silos principios generales acerca de los fenómenos se han establecido como hipótesis, pero tal lógica no puede conducir a esos principios generales. Suele arribarse a los principios científicos generalizando a partir de un número limitado de experiencias; por ejemplo, sí todas las criaturas con plumas que se han observado nacen de huevos, entonces quizá todas las criaturas emplumadas lo hacen. Este es un tipo de razonamiento muy importante, incluso si el número de observaciones es pequeño (por ejemplo, quemarse una vez con fuego puede ser suficiente para que una persona sea cautelosa por el resto de su vida al manejar este elemento). Sin embargo, la tendencia natural a generalizar también puede extraviar al que lo hace. Caer enfermo el día siguiente de romper un espejo puede ser suficiente para que un individuo tema de por vida a los espejos rotos. En un nivel más refinado, descubrir que varios pacientes que tienen los mismos síntomas se recuperan después de administrarles un nuevo fármaco puede conducir al médico a generalizar que todos los pacientes similares recobrarán la salud usándolo, aun cuando la recuperación sólo haya ocurrido por azar.

La tendencia humana a generalizar tiene algunos aspectos sutiles. Una vez formadas, las generalizaciones suelen influir en las percepciones y las interpretaciones que las personas hacer de los acontecimientos. Por ejemplo, si el médico tiene la generalización de que el fármaco ayudará a todos los pacientes que presentan ciertos síntomas, es probable que interprete el estado del paciente como una mejoría después de que éste ha tomado el medicamento, aun si la mejoría es dudosa. Para evitar tales prejuicios en la investigación, los científicos utilizan comúnmente un procedimiento "ciego", en el cual la persona que observa o interpreta los resultados no es la misma que controla las condiciones (por ejemplo, el médico que juzga el estado del paciente no sabe qué tratamiento específico ha recibido éste).


Mucho del razonamiento, y quizá la mayor parte del pensamiento creativo, implica no sólo la lógica sino las analogías. Cuando una situación parece semejarse a otra en algún aspecto, se puede creer que también se parece a otros. Por ejemplo, la luz que se difunde a partir de una fuente lo hace como las ondas en el agua a partir de una perturbación, quizá por eso la luz actúa como las ondas en el agua en otros aspectos, como producir patrones de interferencia donde se cruzan las ondas (si lo hacen). O el Sol es como el fuego porque produce luz y calor, tal vez por eso implica también quemar combustible (de hecho, no lo hace). El punto importante es que el razonamiento por analogía puede sugerir conclusiones, pero nunca puede probar que son verdaderas

Fuente: http://www.project2061.org/esp/publications/sfaa/online/chap9.htm

 TEORIA SOBRE EL INFIERNO


La siguiente pregunta fue hecha en un examen trimestral de 

química en la Universidad de Toronto.



La respuesta de uno de los estudiantes fue tan "profunda" que el 

profesor quiso compartirla con sus colegas, vía Internet, razón 

por la cual podemos todos disfrutar de ella.


Pregunta:

¿Es el Infierno exotérmico (desprende calor) o endotérmico (lo 
absorbe)?

La mayoría de estudiantes escribieron sus comentarios sobre la 
Ley de Boyle (el gas se enfría cuando se expande y se calienta 
cuando se comprime).


Un estudiante, sin embargo, escribió lo siguiente:

En primer lugar, necesitamos saber en qué medida la masa del 
Infierno varía con el tiempo. Para ello hemos de saber a qué 
ritmo entran las almas en el Infierno y a qué ritmo salen.

Tengo sin embargo entendido que, una vez dentro del Infierno, las 
almas ya no salen de él. Por lo tanto, no se producen salidas.

En cuanto a cuántas almas entran, veamos lo que dicen las 
diferentes religiones.

La mayoría de ellas declaran que si no perteneces a ellas, irás 
al Infierno.

Dado que hay más de una religión que así se expresa y dado que la 
gente no pertenece a más de una a la vez, podemos concluir que 
todas las almas van al Infierno.

Con las tasas de nacimientos y muertes existentes, podemos 
deducir que el número de almas en el Infierno crece de forma 
exponencial.

Veamos ahora cómo varía el volumen del Infierno.
Según la Ley de Boyle, para que la temperatura y la presión del 
Infierno se mantengan estables, el volumen debe expandirse en 
proporción a la entrada de almas.

Hay dos posibilidades:

1. Si el Infierno se expande a una velocidad menor que la de 
entrada de almas, la temperatura y la presión en el Infierno se 
incrementarán hasta que éste se desintegre.

2. Si el Infierno se expande a una velocidad mayor que la de la 
entrada de almas, la temperatura y la presión desminuirán hasta 
que el Infierno se congele.

¿Qué posibilidad es la verdadera?:

Si aceptamos lo que me dijo Teresa, mi compañera en el primer año 
de carrera ("hará frío en el Infierno antes de que me acueste 
contigo"), y teniendo en cuenta que me acosté con ella ayer de 
noche, la posibilidad número 2 es la verdadera.

Doy por tanto como cierto que el Infierno es exotérmico y que ya 
está congelado.

El corolario de esta teoría es que, dado que el Infierno ya está 
congelado, ya no acepta más almas y está, por tanto, extinguido, 
dejando al Cielo como única prueba de la existencia de un ser 
divino, lo que explica por qué, anoche, Teresa no paraba de 
gritar "¡Oh, Dios mío!".

ESTE ESTUDIANTE FUE EL ÚNICO QUE OBTUVO CALIFICACIÓN 
"SOBRESALIENTE".

Quizás te pueda interesar: Frases y citas sobre el  ajedrezajedrez y educaciónCurso básico de ajedrez, Peliculas inmortales, ajedrez y literatura

No hay comentarios:

Publicar un comentario